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1 Introduction 

Well decomposed digital design often possesses a hierarchical structure composed of a lot of smaller, 

hierarchically organized, blocks. Such a design structure is natural and very practical. Why? The initial 

specification of the product views the designed system as one compact entity (a black box) and describes its 

behavior and its functions from the external perspective. This type of product description is useful for the initial 

definition of the design goals and facilitates understanding of the proposed system by its future user. However, 

such a specification is not practical as a design specification since it is not possible to deal with the system 

described in a “monolithical” way. Parameters of the future product as well as of the design project cannot be 

estimated without decomposition of the product into smaller parts; the same holds true also for the assignments of 

the design tasks to the design team members. Because of this we decompose the product (here digital design) 

during the system level into subblocks connected with suitable interfaces. A result of the decomposition is the 

described hierarchical structure of the system with internal blocks connected by many interfaces passing across 

the design hierarchies. 

 

Figure 1: Block diagram of the demonstration system. 

An example of such a structure is the design of a microcomputer system depicted in the Figure 1. It includes a 

Central Processing Unit (CPU), instantiated in its own component called cpu_top along with all its supporting 



circuits (DMA, interrupt controller, and others). Further, on the right side of the Figure 1 we can see a few 

peripherals grouped together in the block peripheries_top. Peripherals are controlled via their own local register 

maps, as is common with microcomputers. To allow the application running on the CPU to control the peripherals, 

each of the register maps is connected to the CPU via a bus allowing the CPU to read/write data from/to the register 

map by instructions executed by the microprocessor. For the sake of clarity the figure outlines only the write part 

of the bus, description of its signals can be found in the Table 1. 

Signal Width Purpose 

addr 32 Address to write the data to or read from. 

data 32 Data to be written. 

write 1 Write control signal; register map is updated with the clock rising edge. If write = ‘1’, 

word on the data bus will be written to the address currently present at the addr bus. 

Table 1: Description of the write interface to the register maps. 

There are plenty of interfaces connecting blocks in a typical hierarchically structured system and this brings one 

small disadvantage. To see it have a look at Listing 1 with an excerpt of the VHDL RTL code for the 

peripheries_top block. The listing contains only the parts of the code describing the write register bus connecting 

the CPU and the peripherals. Note in the listing that the RTL code of the block peripheries_top contains the write 

bus signals repeated seven times. All these occurrences you can for sure quickly pinpoint in the code (examine 

Listing 1 along with the explanations): 

• one occurrence is in the peripheries_top block,  

• three occurences are in the components of the peripherals, 

• finally, three occurences are in the instances of the peripheral blocks.   

Looking further at the RTL code of the peripherals (UART, SPI master, counter and timer – see Figure 1), we can 

see that in each of them the write bus is present at the peripheral interface, register map interface, in the component 

of the register map, in the architecture block of the peripheral, and in the connecting RTL code (see UART block 

in the Figure 1 in red) – there are four occurrences per one peripheral, twelve for all three of them. Then on the 

CPU side (again see Figure 1, the left part) is this interface present at the CPU entity, cpu_top block entity, at the 

CPU component in the cpu_top block architecture, and in the RTL code responsible for the connections. Finally, 

the reader can now very likely accept without the need of an elaborate proof that we can find the interface  in the 



source codes five more times on the dig_top level (try to find all of the occurrences and do not forget that one of 

them is again in the RTL implementing the connections of the bus signals). 

What does it mean for us? In case we want to extend the CPU write interface by one more signal (e.g, wait_s 

indicating the bus wait state), we have to manually change interface at 7+12+4+5 = 28 places in the code; to be 

precise: 

• in one place we need to implement the logic driving the new signal – at its “source”, which is here in the 

processor unit (CPU block in the Figure 1). This is a creative design work – implementation of the 

functionality. 

• in three places we need to implement the code to handle the new signal as needed – in the peripheral register 

maps (Register map blocks in the Figure 1). We are solving a creative task here as well, the newly added 

signal must be properly used in all the peripheral blocks. 

• finally, we have to manage correct feed-through of the new signal through the block interfaces in 24 

distinctive places in the code. In this case we are doing more or less repetitive and quite dull work –  we have 

to fix one interface after the other until we add the new signal everywhere and all is “clean”. 

Let us have a closer look at the fact that we have to add new signal to 24 places in the RTL code, everywhere the 

same, and we need to avoid injecting a new bug during this. This is not as trivial as it seems even though that some 

modern HDL code editors can slightly help here with the refactorization function “Add New Port to Module”. The 

easiest bug you can do here is to forget either to update one of the interfaces or the whole peripheral block. 

Discovering such a bug by verification is not an easy task. In addition to this, the poor designer can have a feeling 

that s/he does not deserve such a repetitive work and that it should be all doable in some simpler way; we have to 

admit that the designer is right in this point. 

ENTITY peripheries_top IS 

  PORT ( 

       … block signals … 

       addr : IN std_logic_vector (31 DOWNTO 0); 

       data : IN std_logic_vector (31 DOWNTO 0); 

       write: IN std_logic; 

       … 

  ); 

END ENTITY 

ARCHITECTURE rtl OF peripheries_top is 

 

  COMPONENT uart IS 

    PORT ( 

       … block signals … 

       addr : IN std_logic_vector (31 DOWNTO 0); 

       data : IN std_logic_vector (31 DOWNTO 0); 

       write: IN std_logic; 

       … 

    ) 

  END COMPONENT uart; 



 

  COMPONENT spi_master IS 

    PORT ( 

       … block signals … 

       addr : IN std_logic_vector (31 DOWNTO 0); 

       data : IN std_logic_vector (31 DOWNTO 0); 

       write: IN std_logic; 

       … 

    ) 

  END COMPONENT spi_master; 

 

  COMPONENT counter_timer IS 

    PORT ( 

       … block signals … 

       addr : IN std_logic_vector (31 DOWNTO 0); 

       data : IN std_logic_vector (31 DOWNTO 0); 

       write: IN std_logic; 

       … 

    ) 

  END COMPONENT counter_timer; 

 

BEGIN 

  i_uart : uart 

  PORT MAP ( 

    … other signals as needed … 

    addr  => addr, 

    data  => data, 

    write => write, 

    … 

  ); 

 

  i_spi_master : spi_master 

  PORT MAP ( 

    … other signals as needed … 

    addr  => addr, 

    data  => data, 

    write => write, 

    … 

  ); 

 

  i_counter_timer : counter_timer 

  PORT MAP ( 

    … other signals as needed … 

    addr  => addr, 

    data  => data, 

    write => write, 

    … 

  ); 

END ARCHITECTURE rtl; 

Listing 1: Excerpts of the source code of the system depicted in the Figure 2. 

2 Record data type 

Before we will have a look at how to solve the problem of our poor designer, let us speak a bit about the record 

data type. Data type record (and its equivalents, e.g., struct in C language or SystemVerilog) is a composite data 

type commonly available in all the modern programming languages. Its basic purpose is to gather together data 

items which are mutually related to each other by their purpose or their meaning (see also e.g., [1, page 36], [2]), 

each of the items can be of a different data type. We can easily declare signals, variables, or constants of the record 

type in VHDL, arrays with items of record type and records can be further hierarchically composed. For some 

examples see Listing 2. Signals of the record type can be also used at the input/output interface of any block, which 

will be of an interest for us. 



TYPE T_REG_WRITE IS RECORD 

  addr  : std_logic_vector (31 DOWNTO 0); 

  data  : std_logic_vector (31 DOWNTO 0); 

  write : std_logic;  

END RECORD T_REG_WRITE; 

 

CONSTANT C_REG_WR_RESET : T_REG_WRITE := ( 

   addr  => (OTHERS => '0'), 

   data  => (OTHERS => '0'), 

   write => '0' 

 ); 

 

 

TYPE T_WRITE_ARR IS ARRAY (0 TO 3) OF T_REG_WRITE; 

 

SIGNAL t_wr_bus : T_REG_WRITE; 

Listing 2: Examples of the record type declaration, signal of the record type, constant, and type with elements 

of the record type.  

3 Record data type on a block interface 

Let us now have a look on how to facilitate designer’s work. Actually, we do not need a lot. We need a construct 

which will encapsulate the repeating part of the interface and allow to quickly reuse it as needed. The reader is for 

sure now already expecting that the record data type will help us. Let us go directly to the point: using it we will 

rework the design to get the schematic as in Figure 2. Equivalent RTL code is then in the Listing 3; compare its 

length with what was presented in the Listing 2. Let us now summarize how much work it is to add signal wait_s 

to the write bus and compare with the previous case. The designer must now instead of changing 28 places in the 

code: 

• first, extend the declaration of the record data type by adding the new signal in one place. Despite the fact that 

there are still 7 places in the code where is the write bus used, the declaration is only one – placed in our case 

in the package in the file reg_bus_pkg.vhd (to place the record type definition into the VHDL package  is 

useful as it allows to share it among the design entities). Adding the wait_s signal thus means to modify only 

one place in the code, now.  

• second, we have to design the control logic to drive the new signal in one place – „at its source“, here in the 

CPU unit (CPU block in the Figure 2), 

• third, we have to design the processing of the newly added signal in three places – in the peripheral register 

maps (blue blocks „Register map“ in the Figure 2). In this as well as in the previous cases the designer does a 

creative work. 

And that is all. Prior to the change we had to ensure the right handling of the new signal in 24 distinct locations, 

where the signal was crossing the boundaries of the blocks. This is now handled automatically by the update of 



the data type declaration in the first step; the change is spread everywhere automatically as the compiler plainly 

uses the updated definition of the data type.  

 

 
Figure 2: A block diagram of the demonstrational system refactored to encapsulate the write bus into the record 

data type. 

reg_bus_pkg.vhd: 

TYPE T_REG_WRITE IS RECORD 

  addr  : std_logic_vector (31 DOWNTO 0); 

  data  : std_logic_vector (31 DOWNTO 0); 

  write : std_logic; 

  wait_s: std_logic; 

END RECORD T_REG_WRITE; 

 

peripheries_top.vhd: 

 

ENTITY peripheries_top IS 

  PORT ( 

       … block ports … 

       reg_write : IN T_REG_WRITE; 

       … block ports … 

  ); 

END ENTITY 

ARCHITECTURE rtl OF peripheries_top is 

 

  COMPONENT uart IS 

    PORT ( 

       … block ports … 

       reg_write : IN T_REG_WRITE; 

       … block ports … 

    ) 

  END COMPONENT uart; 

 

  COMPONENT spi_master IS 

    PORT ( 

       … block ports … 

       reg_write : IN T_REG_WRITE; 

       … block ports … 

    ) 

  END COMPONENT spi_master; 

 

  COMPONENT counter_timer IS 

    PORT ( 

       … block ports … 

       reg_write : IN T_REG_WRITE; 

       … block ports … 

    ) 

  END COMPONENT counter_timer; 

 

BEGIN 

  i_uart : uart 

  PORT MAP ( 

    … block ports … 



    reg_write => reg_write, 

    … block ports … 

  ); 

 

  i_spi_master : spi_master 

  PORT MAP ( 

    … block ports … 

    reg_write => reg_write, 

    … block ports … 

  ); 

 

  i_counter_timer : counter_timer 

  PORT MAP ( 

    … block ports … 

    reg_write => reg_write, 

    … block ports … 

  ); 

END ARCHITECTURE rtl; 

Listing 3: Refactored code of the peripheries_top entity using the signals of the record data type. 

4 Implementation of registers 

Usage of the signals of the record data type facilitates designer’s work also under other circumstances. It is quite 

practical when we implement a register. If we need to register the original write bus (as in the Listing 1) with the 

clock rising edge (flip-flop), a naïve approach leads to the VHDL code in the Listing 4. 

SIGNAL addr_int : std_logic_vector (31 DOWNTO 0); 

SIGNAL data_int : std_logic_vector (31 DOWNTO 0); 

SIGNAL write_int: std_logic; 

 

output_reg:PROCESS (res_n, clk) 

BEGIN 

  IF res_n = ‘0’ THEN 

    addr  <= (OTHERS => ‘0‘); 

    data  <= (OTHERS => ‘0‘); 

    write <= ‘0‘; 

  ELSIF rising_edge(clk) THEN 

    addr  <= addr_int; 

    data  <= data_int; 

    write <= write_int; 

  END IF; 

END PROCESS output_reg; 

Lising 4: Register on the write bus, the naive RTL design approach. 

We can simplify the code significantly if we refactor the code and merge three distinctive signals into one record, 

see Listing 5. 

SIGNAL reg_wr_int : T_REG_WRITE; 

 

output_reg_2: PROCESS (res_n, clk) 

BEGIN 

  IF res_n = ‘0’ THEN --(#) 

    reg_wr.addr  <= (OTHERS => ‘0‘);  

    reg_wr.data  <= (OTHERS => ‘0‘); 

    reg_wr.write <= ‘0‘; 

  ELSIF rising_edge(clk) THEN 

    reg_wr <= reg_wr_int; --(*) 

  END IF; 

END PROCESS output_reg_2; 

Listing 5: The first version of the RTL code refactored to benefit from the record data type. 

 



This already brings a positive contribution: if we change the record datatype declaration, the change will be 

automatically reflected on line (*) and the registers will be implemented according to the current declaration. 

However, we still will have to hand-modify the process. Why? Have a look at the code handling the asynchronous 

reset marked with (#): if we add the following code to the record the new signal wait_s, we will have to add to the 

process under the line marked with (#)  

reg_wr.wait_s <= ‘0’; 

to handle the proper reset of the signal to the logic 0. If we forget the initialization, synthesis tool will drive the 

signal wait_s using a register without asynchronous reset and this can make problems in the design. In such a case 

only meticulous verification can save us – testcases can (not necessarily) catch the consequence of the fact that the 

signal wait_s will be in the ‘U‘ state after the start of the RTL simulation or not reset together with other signals. 

We avoid this in an elegant way by a declaration of a constant of the record type. The constant will define the reset 

values (inactive state) at the register output. The whole solution is in the Listing 6. 

CONSTANT C_REG_WR_RES : T_REG_WRITE := ( 

  addr => (OTHERS => ‘0’), 

  data => (OTHERS => ‘0’), 

  write => ‘0’ 

); 

 

SIGNAL reg_wr : T_REG_WRITE; 

output_reg_3:PROCESS (res_n, clk) 

BEGIN 

  IF res_n = ‘0’ THEN 

    reg_wr <= C_REG_WR_RES; 

  ELSIF rising_edge(clk) THEN 

    reg_wr <= reg_wr_int; 

  END IF; 

END PROCESS output_reg_3; 

Listing 6: Usage of a constant of the record type to simplify the implementation of the reset. 

Now if we need to change the record type we just need to change the corresponding constant defining the reset 

state and the register will be “updated automatically” with the next compilation or synthesis. The beauty of this 

approach lies also in the fact that the compiler watches us: if the designer changes the type declaration and forgets 

to change the constant, compilation will end up with an error and the designer will have to fix the design. As an 

example, the Vivado compilator will report 

ERROR: [VRFC 10-3717] some record elements are missing in this aggregate of 

't_reg_write' [record_logic_demo.vhd:49] 

At this moment we are automatically notified of all the places where we need to do the RTL change, which 

significantly reduces a risk of a bug injection as a result of a design change. 



5 Combinatorial functions 

The reader will not be surprised if we write that there are other language constructs which are normally dealing 

with simpe signals behaving in such a “friendly” way. Signals of the record type we can easily multiplex, see 

Listing 7, process comb_func. Similarly we can implement gating of the signal to its inactive values using the pre-

declared constant, see also listing 7, line marked with (#). Last, but not least, using a simple construction sketched 

in the process overwrite_write you can change the value of only one item in the signal of the record data type. 

SIGNAL reg_wr_0 : T_REG_WRITE; 

SIGNAL reg_wr_1 : T_REG_WRITE; 

SIGNAL sel : std_logic; 

 

SIGNAL write_2  : std_logic; 

SIGNAL reg_wr_2 : T_REG_WRITE 

 

 

comb_func: PROCESS (sel, reg_rw_0, reg_rw_1) 

BEGIN 

  IF sel = ‘1’ THEN 

    out_wr <= reg_rw_0; 

  ELSE 

    out_wr <= reg_rw_1; 

  END IF; 

END PROCESS comb_func; 

 

out_wr <= reg_rw_0 WHEN disable = ‘0‘ ELSE C_REG_WR_RES; --(#) 

 

overwrite_write : PROCESS (reg_wr_0, write_2) 

BEGIN 

  reg_wr_2       <= reg_wr_0; 

  reg_wr_2.write <= write_2; 

END PROCESS overwrite_write; 

Listing 7: Some other ways how to deal with signals of the record type. 

 

6 Caveats 

Advantages of the usage of the record data type were thouroughly described in the previous text. It looks like that 

the designer here only gains a lot and does not lose anything. We can ask then – does the usage of records bring 

also some drawbacks?  

First, some VHDL language constructs (mainly from the newer versions of the VHDL language standard) are 

sometimes not fully supported in the current synthesizers and simulation tools. The good news here is that the 

record datatype is fully supported by all the up-to-date tools we know about and routinely using. Thus, there is no 

drawback, here. 

Second, it is better to avoid usage of the signals of the record type at the top level interface of the design hierarchy, 

see Figure 3, block DUT (Design Under Test), all interfaces and signals marked in blue color. If you do this and 

use such a signal here, you will have to maintain two versions of the instance of the DUT entity in the tb_top entity 



(testbench top). This is caused by the need to do simulation (design verification) on the RTL level (the first version 

of the instance in the tb_top) as well as on the gate level (the second version of the DUT instace in the tb_top 

block) where we need to instantiate netlist of the DUT annotated by the SDF file instead of the DUT RTL 

implementation (see also [3] and link on the page [4]). Netlist is generated from the RTL code by the physical 

implementation (synthesis and place and route) and describes the real physical schematic of the design. The signal 

of the record data type is replaced in such a schematic representation by its real physical implementation – i.e., 

every item of the record datatype is replaced by a standalone signal. This does not bring any problem if the signal 

of a record type is used inside the DUT; however, if we use such a signal at the DUT top interface, then the 

interface implementations will differ between the RTL design and netlist. This will cause some small (easily 

solvable) complications at the moment when we want to instantiate the DUT block in the testbench top entity 

tb_top. The issue can be solved using the VHDL construction in the Listing 8. 

 

Figure 3: An example of a structure of the verification environment of a digital design. Signals and interfaces 

where there is not recommended to use records are marked in blue. 

Third, some small complications also arise if the signal of the record type is used together with the hierarchical 

names construction [5, 6] (and some proprietary tools like SignalSpy in the Siemens simulators or nc_mirror in 

the simulators from Cadence). Such a language construct allows the testcases and modules in the verification 

environment to look into the internal implementation of the block. We need this in many cases during the block 

verification, typically when some block internal signal carries an important information on the state of the design. 

And we have here the same problem with the structure of the block differing between the RTL and the gate level 

implementations – again we will have to maintain two ver sions of the testbench and testcases code, one for the 



RTL and the other for the gate level simulations. Also here we can easily solve the problem by a small modification 

of the already presented IF-GENERATE construct generating both mappings, see the Listing 8. 

Fourth, advisable is to group into one signal of the record type signals which are related to each other by similar 

meaning – e.g., in our case we grouped together signals which form the write bus of the CPU perihperal bus. 

Creating of a “superrecord” which contains plenty of signals which are not mutually related and have in common 

only the fact that they occur at the same block interface would make the code hard to understand. 

ENTITY dut IS  

  GENERIC ( 

    G_GATE_SIMS : natural := 0; -- 0 – RTL, 1 – hradlová úroveň 

  ) 

  PORT ( … ) 

END ENTITY dut; 

 

ARCHITECTURE rtl OF dut IS 

… 

BEGIN 

 

-- connections for the RTL level 

gen_rtl : IF G_GATE_SIMS = 0 GENERATE 

  i_dut : dut_rtl 

    PORT MAP (  

… 

    ) 

END GENERATE gen_rtl; 

 

-- connections for the gate level 

gen_gate : IF G_GATE_SIMS = 1 GENERATE 

  i_dut : dut_gate  

    PORT MAP ( 

… 

    ) 

END GENERATE gen_gate; 

 

END ARCHITECTURE rtl; 

Listing 8: IF – GENERATE VHDL construct. 

7 Conclusions 

This paper summarizes the contributions as well as potential drawbacks of the usage of the record data type in the 

HDL languages. Designer can save a lot of dull and monotonous work by using the record datatype, write better 

and more readable code, and prevent injection of some rather unpleasant bugs. In addition to this, usage of the 

record datatype does not bring any extra implementation effort and is supported by all the tools known to the 

author without limitations. To conclude, we can only recommend to the reader to use the record data type wherever 

appropriate in his/her future designs. 
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Used abbreviations 

ASIC  Application Specific Integrated Circuit 

CPU  Central Processing Unit 

DMA  Direct Memory Access 

DUT  Design Under Test 

FPGA   Field Programmable Gate Array 

HDL  Hardware Description Language 

IP   Intellectual Property 

RTL   Register Transfer Level 

tb_top  TestBench TOP 
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