
The advantages of the usage of the record data type in the synthesizable

HDL code

 Jakub Šťastný
jakub.stastny@asicentrum.com

ASICentrum spol. s r.o.

1 Introduction

Well decomposed digital design often possesses a hierarchical structure composed of a lot of smaller,

hierarchically organized, blocks. Such a design structure is natural and very practical. Why? The initial

specification of the product views the designed system as one compact entity (a black box) and describes its

behavior and its functions from the external perspective. This type of product description is useful for the initial

definition of the design goals and facilitates understanding of the proposed system by its future user. However,

such a specification is not practical as a design specification since it is not possible to deal with the system

described in a “monolithical” way. Parameters of the future product as well as of the design project cannot be

estimated without decomposition of the product into smaller parts; the same holds true also for the assignments of

the design tasks to the design team members. Because of this we decompose the product (here digital design)

during the system level into subblocks connected with suitable interfaces. A result of the decomposition is the

described hierarchical structure of the system with internal blocks connected by many interfaces passing across

the design hierarchies.

Figure 1: Block diagram of the demonstration system.

An example of such a structure is the design of a microcomputer system depicted in the Figure 1. It includes a

Central Processing Unit (CPU), instantiated in its own component called cpu_top along with all its supporting

circuits (DMA, interrupt controller, and others). Further, on the right side of the Figure 1 we can see a few

peripherals grouped together in the block peripheries_top. Peripherals are controlled via their own local register

maps, as is common with microcomputers. To allow the application running on the CPU to control the peripherals,

each of the register maps is connected to the CPU via a bus allowing the CPU to read/write data from/to the register

map by instructions executed by the microprocessor. For the sake of clarity the figure outlines only the write part

of the bus, description of its signals can be found in the Table 1.

Signal Width Purpose

addr 32 Address to write the data to or read from.

data 32 Data to be written.

write 1 Write control signal; register map is updated with the clock rising edge. If write = ‘1’,

word on the data bus will be written to the address currently present at the addr bus.

Table 1: Description of the write interface to the register maps.

There are plenty of interfaces connecting blocks in a typical hierarchically structured system and this brings one

small disadvantage. To see it have a look at Listing 1 with an excerpt of the VHDL RTL code for the

peripheries_top block. The listing contains only the parts of the code describing the write register bus connecting

the CPU and the peripherals. Note in the listing that the RTL code of the block peripheries_top contains the write

bus signals repeated seven times. All these occurrences you can for sure quickly pinpoint in the code (examine

Listing 1 along with the explanations):

• one occurrence is in the peripheries_top block,

• three occurences are in the components of the peripherals,

• finally, three occurences are in the instances of the peripheral blocks.

Looking further at the RTL code of the peripherals (UART, SPI master, counter and timer – see Figure 1), we can

see that in each of them the write bus is present at the peripheral interface, register map interface, in the component

of the register map, in the architecture block of the peripheral, and in the connecting RTL code (see UART block

in the Figure 1 in red) – there are four occurrences per one peripheral, twelve for all three of them. Then on the

CPU side (again see Figure 1, the left part) is this interface present at the CPU entity, cpu_top block entity, at the

CPU component in the cpu_top block architecture, and in the RTL code responsible for the connections. Finally,

the reader can now very likely accept without the need of an elaborate proof that we can find the interface in the

source codes five more times on the dig_top level (try to find all of the occurrences and do not forget that one of

them is again in the RTL implementing the connections of the bus signals).

What does it mean for us? In case we want to extend the CPU write interface by one more signal (e.g, wait_s

indicating the bus wait state), we have to manually change interface at 7+12+4+5 = 28 places in the code; to be

precise:

• in one place we need to implement the logic driving the new signal – at its “source”, which is here in the

processor unit (CPU block in the Figure 1). This is a creative design work – implementation of the

functionality.

• in three places we need to implement the code to handle the new signal as needed – in the peripheral register

maps (Register map blocks in the Figure 1). We are solving a creative task here as well, the newly added

signal must be properly used in all the peripheral blocks.

• finally, we have to manage correct feed-through of the new signal through the block interfaces in 24

distinctive places in the code. In this case we are doing more or less repetitive and quite dull work – we have

to fix one interface after the other until we add the new signal everywhere and all is “clean”.

Let us have a closer look at the fact that we have to add new signal to 24 places in the RTL code, everywhere the

same, and we need to avoid injecting a new bug during this. This is not as trivial as it seems even though that some

modern HDL code editors can slightly help here with the refactorization function “Add New Port to Module”. The

easiest bug you can do here is to forget either to update one of the interfaces or the whole peripheral block.

Discovering such a bug by verification is not an easy task. In addition to this, the poor designer can have a feeling

that s/he does not deserve such a repetitive work and that it should be all doable in some simpler way; we have to

admit that the designer is right in this point.

ENTITY peripheries_top IS

 PORT (

 … block signals …

 addr : IN std_logic_vector (31 DOWNTO 0);

 data : IN std_logic_vector (31 DOWNTO 0);

 write: IN std_logic;

 …

);

END ENTITY

ARCHITECTURE rtl OF peripheries_top is

 COMPONENT uart IS

 PORT (

 … block signals …

 addr : IN std_logic_vector (31 DOWNTO 0);

 data : IN std_logic_vector (31 DOWNTO 0);

 write: IN std_logic;

 …

)

 END COMPONENT uart;

 COMPONENT spi_master IS

 PORT (

 … block signals …

 addr : IN std_logic_vector (31 DOWNTO 0);

 data : IN std_logic_vector (31 DOWNTO 0);

 write: IN std_logic;

 …

)

 END COMPONENT spi_master;

 COMPONENT counter_timer IS

 PORT (

 … block signals …

 addr : IN std_logic_vector (31 DOWNTO 0);

 data : IN std_logic_vector (31 DOWNTO 0);

 write: IN std_logic;

 …

)

 END COMPONENT counter_timer;

BEGIN

 i_uart : uart

 PORT MAP (

 … other signals as needed …

 addr => addr,

 data => data,

 write => write,

 …

);

 i_spi_master : spi_master

 PORT MAP (

 … other signals as needed …

 addr => addr,

 data => data,

 write => write,

 …

);

 i_counter_timer : counter_timer

 PORT MAP (

 … other signals as needed …

 addr => addr,

 data => data,

 write => write,

 …

);

END ARCHITECTURE rtl;

Listing 1: Excerpts of the source code of the system depicted in the Figure 2.

2 Record data type

Before we will have a look at how to solve the problem of our poor designer, let us speak a bit about the record

data type. Data type record (and its equivalents, e.g., struct in C language or SystemVerilog) is a composite data

type commonly available in all the modern programming languages. Its basic purpose is to gather together data

items which are mutually related to each other by their purpose or their meaning (see also e.g., [1, page 36], [2]),

each of the items can be of a different data type. We can easily declare signals, variables, or constants of the record

type in VHDL, arrays with items of record type and records can be further hierarchically composed. For some

examples see Listing 2. Signals of the record type can be also used at the input/output interface of any block, which

will be of an interest for us.

TYPE T_REG_WRITE IS RECORD

 addr : std_logic_vector (31 DOWNTO 0);

 data : std_logic_vector (31 DOWNTO 0);

 write : std_logic;

END RECORD T_REG_WRITE;

CONSTANT C_REG_WR_RESET : T_REG_WRITE := (

 addr => (OTHERS => '0'),

 data => (OTHERS => '0'),

 write => '0'

);

TYPE T_WRITE_ARR IS ARRAY (0 TO 3) OF T_REG_WRITE;

SIGNAL t_wr_bus : T_REG_WRITE;

Listing 2: Examples of the record type declaration, signal of the record type, constant, and type with elements

of the record type.

3 Record data type on a block interface

Let us now have a look on how to facilitate designer’s work. Actually, we do not need a lot. We need a construct

which will encapsulate the repeating part of the interface and allow to quickly reuse it as needed. The reader is for

sure now already expecting that the record data type will help us. Let us go directly to the point: using it we will

rework the design to get the schematic as in Figure 2. Equivalent RTL code is then in the Listing 3; compare its

length with what was presented in the Listing 2. Let us now summarize how much work it is to add signal wait_s

to the write bus and compare with the previous case. The designer must now instead of changing 28 places in the

code:

• first, extend the declaration of the record data type by adding the new signal in one place. Despite the fact that

there are still 7 places in the code where is the write bus used, the declaration is only one – placed in our case

in the package in the file reg_bus_pkg.vhd (to place the record type definition into the VHDL package is

useful as it allows to share it among the design entities). Adding the wait_s signal thus means to modify only

one place in the code, now.

• second, we have to design the control logic to drive the new signal in one place – „at its source“, here in the

CPU unit (CPU block in the Figure 2),

• third, we have to design the processing of the newly added signal in three places – in the peripheral register

maps (blue blocks „Register map“ in the Figure 2). In this as well as in the previous cases the designer does a

creative work.

And that is all. Prior to the change we had to ensure the right handling of the new signal in 24 distinct locations,

where the signal was crossing the boundaries of the blocks. This is now handled automatically by the update of

the data type declaration in the first step; the change is spread everywhere automatically as the compiler plainly

uses the updated definition of the data type.

Figure 2: A block diagram of the demonstrational system refactored to encapsulate the write bus into the record

data type.

reg_bus_pkg.vhd:

TYPE T_REG_WRITE IS RECORD

 addr : std_logic_vector (31 DOWNTO 0);

 data : std_logic_vector (31 DOWNTO 0);

 write : std_logic;

 wait_s: std_logic;

END RECORD T_REG_WRITE;

peripheries_top.vhd:

ENTITY peripheries_top IS

 PORT (

 … block ports …

 reg_write : IN T_REG_WRITE;

 … block ports …

);

END ENTITY

ARCHITECTURE rtl OF peripheries_top is

 COMPONENT uart IS

 PORT (

 … block ports …

 reg_write : IN T_REG_WRITE;

 … block ports …

)

 END COMPONENT uart;

 COMPONENT spi_master IS

 PORT (

 … block ports …

 reg_write : IN T_REG_WRITE;

 … block ports …

)

 END COMPONENT spi_master;

 COMPONENT counter_timer IS

 PORT (

 … block ports …

 reg_write : IN T_REG_WRITE;

 … block ports …

)

 END COMPONENT counter_timer;

BEGIN

 i_uart : uart

 PORT MAP (

 … block ports …

 reg_write => reg_write,

 … block ports …

);

 i_spi_master : spi_master

 PORT MAP (

 … block ports …

 reg_write => reg_write,

 … block ports …

);

 i_counter_timer : counter_timer

 PORT MAP (

 … block ports …

 reg_write => reg_write,

 … block ports …

);

END ARCHITECTURE rtl;

Listing 3: Refactored code of the peripheries_top entity using the signals of the record data type.

4 Implementation of registers

Usage of the signals of the record data type facilitates designer’s work also under other circumstances. It is quite

practical when we implement a register. If we need to register the original write bus (as in the Listing 1) with the

clock rising edge (flip-flop), a naïve approach leads to the VHDL code in the Listing 4.

SIGNAL addr_int : std_logic_vector (31 DOWNTO 0);

SIGNAL data_int : std_logic_vector (31 DOWNTO 0);

SIGNAL write_int: std_logic;

output_reg:PROCESS (res_n, clk)

BEGIN

 IF res_n = ‘0’ THEN

 addr <= (OTHERS => ‘0‘);

 data <= (OTHERS => ‘0‘);

 write <= ‘0‘;

 ELSIF rising_edge(clk) THEN

 addr <= addr_int;

 data <= data_int;

 write <= write_int;

 END IF;

END PROCESS output_reg;

Lising 4: Register on the write bus, the naive RTL design approach.

We can simplify the code significantly if we refactor the code and merge three distinctive signals into one record,

see Listing 5.

SIGNAL reg_wr_int : T_REG_WRITE;

output_reg_2: PROCESS (res_n, clk)

BEGIN

 IF res_n = ‘0’ THEN --(#)

 reg_wr.addr <= (OTHERS => ‘0‘);

 reg_wr.data <= (OTHERS => ‘0‘);

 reg_wr.write <= ‘0‘;

 ELSIF rising_edge(clk) THEN

 reg_wr <= reg_wr_int; --(*)

 END IF;

END PROCESS output_reg_2;

Listing 5: The first version of the RTL code refactored to benefit from the record data type.

This already brings a positive contribution: if we change the record datatype declaration, the change will be

automatically reflected on line (*) and the registers will be implemented according to the current declaration.

However, we still will have to hand-modify the process. Why? Have a look at the code handling the asynchronous

reset marked with (#): if we add the following code to the record the new signal wait_s, we will have to add to the

process under the line marked with (#)

reg_wr.wait_s <= ‘0’;

to handle the proper reset of the signal to the logic 0. If we forget the initialization, synthesis tool will drive the

signal wait_s using a register without asynchronous reset and this can make problems in the design. In such a case

only meticulous verification can save us – testcases can (not necessarily) catch the consequence of the fact that the

signal wait_s will be in the ‘U‘ state after the start of the RTL simulation or not reset together with other signals.

We avoid this in an elegant way by a declaration of a constant of the record type. The constant will define the reset

values (inactive state) at the register output. The whole solution is in the Listing 6.

CONSTANT C_REG_WR_RES : T_REG_WRITE := (

 addr => (OTHERS => ‘0’),

 data => (OTHERS => ‘0’),

 write => ‘0’

);

SIGNAL reg_wr : T_REG_WRITE;

output_reg_3:PROCESS (res_n, clk)

BEGIN

 IF res_n = ‘0’ THEN

 reg_wr <= C_REG_WR_RES;

 ELSIF rising_edge(clk) THEN

 reg_wr <= reg_wr_int;

 END IF;

END PROCESS output_reg_3;

Listing 6: Usage of a constant of the record type to simplify the implementation of the reset.

Now if we need to change the record type we just need to change the corresponding constant defining the reset

state and the register will be “updated automatically” with the next compilation or synthesis. The beauty of this

approach lies also in the fact that the compiler watches us: if the designer changes the type declaration and forgets

to change the constant, compilation will end up with an error and the designer will have to fix the design. As an

example, the Vivado compilator will report

ERROR: [VRFC 10-3717] some record elements are missing in this aggregate of

't_reg_write' [record_logic_demo.vhd:49]

At this moment we are automatically notified of all the places where we need to do the RTL change, which

significantly reduces a risk of a bug injection as a result of a design change.

5 Combinatorial functions

The reader will not be surprised if we write that there are other language constructs which are normally dealing

with simpe signals behaving in such a “friendly” way. Signals of the record type we can easily multiplex, see

Listing 7, process comb_func. Similarly we can implement gating of the signal to its inactive values using the pre-

declared constant, see also listing 7, line marked with (#). Last, but not least, using a simple construction sketched

in the process overwrite_write you can change the value of only one item in the signal of the record data type.

SIGNAL reg_wr_0 : T_REG_WRITE;

SIGNAL reg_wr_1 : T_REG_WRITE;

SIGNAL sel : std_logic;

SIGNAL write_2 : std_logic;

SIGNAL reg_wr_2 : T_REG_WRITE

comb_func: PROCESS (sel, reg_rw_0, reg_rw_1)

BEGIN

 IF sel = ‘1’ THEN

 out_wr <= reg_rw_0;

 ELSE

 out_wr <= reg_rw_1;

 END IF;

END PROCESS comb_func;

out_wr <= reg_rw_0 WHEN disable = ‘0‘ ELSE C_REG_WR_RES; --(#)

overwrite_write : PROCESS (reg_wr_0, write_2)

BEGIN

 reg_wr_2 <= reg_wr_0;

 reg_wr_2.write <= write_2;

END PROCESS overwrite_write;

Listing 7: Some other ways how to deal with signals of the record type.

6 Caveats

Advantages of the usage of the record data type were thouroughly described in the previous text. It looks like that

the designer here only gains a lot and does not lose anything. We can ask then – does the usage of records bring

also some drawbacks?

First, some VHDL language constructs (mainly from the newer versions of the VHDL language standard) are

sometimes not fully supported in the current synthesizers and simulation tools. The good news here is that the

record datatype is fully supported by all the up-to-date tools we know about and routinely using. Thus, there is no

drawback, here.

Second, it is better to avoid usage of the signals of the record type at the top level interface of the design hierarchy,

see Figure 3, block DUT (Design Under Test), all interfaces and signals marked in blue color. If you do this and

use such a signal here, you will have to maintain two versions of the instance of the DUT entity in the tb_top entity

(testbench top). This is caused by the need to do simulation (design verification) on the RTL level (the first version

of the instance in the tb_top) as well as on the gate level (the second version of the DUT instace in the tb_top

block) where we need to instantiate netlist of the DUT annotated by the SDF file instead of the DUT RTL

implementation (see also [3] and link on the page [4]). Netlist is generated from the RTL code by the physical

implementation (synthesis and place and route) and describes the real physical schematic of the design. The signal

of the record data type is replaced in such a schematic representation by its real physical implementation – i.e.,

every item of the record datatype is replaced by a standalone signal. This does not bring any problem if the signal

of a record type is used inside the DUT; however, if we use such a signal at the DUT top interface, then the

interface implementations will differ between the RTL design and netlist. This will cause some small (easily

solvable) complications at the moment when we want to instantiate the DUT block in the testbench top entity

tb_top. The issue can be solved using the VHDL construction in the Listing 8.

Figure 3: An example of a structure of the verification environment of a digital design. Signals and interfaces

where there is not recommended to use records are marked in blue.

Third, some small complications also arise if the signal of the record type is used together with the hierarchical

names construction [5, 6] (and some proprietary tools like SignalSpy in the Siemens simulators or nc_mirror in

the simulators from Cadence). Such a language construct allows the testcases and modules in the verification

environment to look into the internal implementation of the block. We need this in many cases during the block

verification, typically when some block internal signal carries an important information on the state of the design.

And we have here the same problem with the structure of the block differing between the RTL and the gate level

implementations – again we will have to maintain two ver sions of the testbench and testcases code, one for the

RTL and the other for the gate level simulations. Also here we can easily solve the problem by a small modification

of the already presented IF-GENERATE construct generating both mappings, see the Listing 8.

Fourth, advisable is to group into one signal of the record type signals which are related to each other by similar

meaning – e.g., in our case we grouped together signals which form the write bus of the CPU perihperal bus.

Creating of a “superrecord” which contains plenty of signals which are not mutually related and have in common

only the fact that they occur at the same block interface would make the code hard to understand.

ENTITY dut IS

 GENERIC (

 G_GATE_SIMS : natural := 0; -- 0 – RTL, 1 – hradlová úroveň

)

 PORT (…)

END ENTITY dut;

ARCHITECTURE rtl OF dut IS

…

BEGIN

-- connections for the RTL level

gen_rtl : IF G_GATE_SIMS = 0 GENERATE

 i_dut : dut_rtl

 PORT MAP (

…

)

END GENERATE gen_rtl;

-- connections for the gate level

gen_gate : IF G_GATE_SIMS = 1 GENERATE

 i_dut : dut_gate

 PORT MAP (

…

)

END GENERATE gen_gate;

END ARCHITECTURE rtl;

Listing 8: IF – GENERATE VHDL construct.

7 Conclusions

This paper summarizes the contributions as well as potential drawbacks of the usage of the record data type in the

HDL languages. Designer can save a lot of dull and monotonous work by using the record datatype, write better

and more readable code, and prevent injection of some rather unpleasant bugs. In addition to this, usage of the

record datatype does not bring any extra implementation effort and is supported by all the tools known to the

author without limitations. To conclude, we can only recommend to the reader to use the record data type wherever

appropriate in his/her future designs.

8 Acknowledgement

It is my pleasant duty to thank to my wonderful wife Julia and colleagues Robert Kvaček, Tomáš Novák, and

Luboš Hradecký for their language, stylistic, and content review and great comments to the text.

Used abbreviations

ASIC Application Specific Integrated Circuit

CPU Central Processing Unit

DMA Direct Memory Access

DUT Design Under Test

FPGA Field Programmable Gate Array

HDL Hardware Description Language

IP Intellectual Property

RTL Register Transfer Level

tb_top TestBench TOP

References for further study

[1] PINKER Jiří, POUPA Martin. Číslicové systémy a jazyk VHDL (Digital systems and the VHDL Language, in

Czech). BEN Praha 2006

[2] NAND Land [online]. Records – VHDL Example [cit 25.3.2024]. Available at https://nandland.com/record/

[3] ŠŤASTNÝ, Jakub. Simulace číslicových obvodů na hradlové úrovni (Gate level simulations of the digital

circuits, in Czech). DPS Elektronika od A do Z, květen/červen 2015, s 8-11.

[4] ŠŤASTNÝ, Jakub. Minimized Logic. [online; cit 25.3.2024]. Available at www.minimizedlogic.com

[5] DOULOS [online]. VHDL-2008: Easier to use, Hierarchical names [cit 25.3.2024]. Available at

https://www.doulos.com/knowhow/vhdl/vhdl-2008-easier-to-use/#hierarchicalnames

[6] CHIPVERIFY [online]. Verilog Hierarchical Reference Scope [cit 25.3.2024]. Available at

https://www.chipverify.com/verilog/verilog-hierarchical-reference-scope

